Drug Selection via Joint Push and Learning to Rank

نویسندگان

  • Yicheng He
  • Junfeng Liu
  • Lijun Cheng
  • Xia Ning
چکیده

Selecting the right drugs for the right patients is a primary goal of precision medicine. In this manuscript, we consider the problem of cancer drug selection in a learning-to-rank framework. We have formulated the cancer drug selection problem as to accurately predicting 1). the ranking positions of sensitive drugs and 2). the ranking orders among sensitive drugs in cancer cell lines based on their responses to cancer drugs. We have developed a new learning-to-rank method, denoted as pLETORg, that predicts drug ranking structures in each cell line via using drug latent vectors and cell line latent vectors. The pLETORg method learns such latent vectors through explicitly enforcing that, in the drug ranking list of each cell line, the sensitive drugs are pushed above insensitive drugs, and meanwhile the ranking orders among sensitive drugs are correct. Genomics information on cell lines is leveraged in learning the latent vectors. Our experimental results on a benchmark cell line-drug response dataset demonstrate that the new pLETORg significantly outperforms the state-of-the-art method in prioritizing new sensitive drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE

The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generaliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.07691  شماره 

صفحات  -

تاریخ انتشار 2018